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Abstract
We examine the Hamiltonian structures of some Calogero–Moser and
Ruijsenaars–Schneider N-body integrable models. We propose explicit
formulations of the bi-Hamiltonian structures for the discrete models and field-
theoretical realizations of these structures. We discuss the relevance of these
realizations as collective-field theory for the discrete models.

Mathematics Subject Classification: 37K10, 37K05

1. Introduction

Bi-Hamiltonian structures for N-body dynamical systems can be seen as a dual formulation of
integrability, in the sense that they substitute a hierarchy of compatible Poisson structures to
a hierarchy of commuting Hamiltonians, to establish Liouville integrability of a given system
[1, 2]. Our specific interest for this formulation stems here from the conjecture that, in the
case of the N-body Ruijsenaars–Schneider (RS) model [3], its higher Hamiltonian structures
may be the relevant framework to describe the dynamics of some magnon-type solutions of
string theory [4, 5]. Relevance of higher Poisson structures was demonstrated in the associated
sine-Gordon theory in [6].

This leads us to a general questioning of the bi-Hamiltonian structures for related
integrable discrete N-body systems and continuous realizations thereof. More specifically:
the explicit realization of the bi-Hamiltonian structure for the rational Calogero–Moser (CM)
model [1, 2, 7]4 is the basis for our construction, leading us toward our current proposition of
a bi-Hamiltonian structure for An rational RS models and trigonometric CM models.

4 We would like to thank one of the referees for pointing out [7].

1751-8113/10/185201+14$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/18/185201
mailto:ianiceto@math.ist.utl.pt
mailto:Jean.Avan@u-cergy.fr
mailto:Antal_Jevicki@brown.edu
http://stacks.iop.org/JPhysA/43/185201


J. Phys. A: Math. Theor. 43 (2010) 185201 I Aniceto et al

At this point, we wish to make an important remark: a realization of a bi-Hamiltonian
structure was proposed long ago for the relativistic N-body Toda model (see e.g. [8, 9]) which
is a long-range limit of RS dynamics. However, the difficulty in the full CM and RS cases
lies (in technical terms) in the dynamical nature of the r-matrix structure which precludes the
use of canonical definitions a la Sklyanin (such as discussed in [8]) of the second Hamiltonian
structure as a direct ‘quadratization’ of the first Hamiltonian structure encapsulated in any
linear r-matrix structure (see also [10, 11] and references therein).

In parallel, we propose a realization of these three bi-Hamiltonian structures in terms
of continuous field theories, which can be identified, at least in the two CM cases, with the
collective-field continuous limit of the discrete systems. Identification in the RS case is more
questionable and shall be accordingly dealt with in a further study; we shall only give some
comments about it.

We shall successively describe the results for the rational CM, trigonometric CM
and rational RS models. We denote in the discrete case ‘bi-Hamiltonian structures’
only those pairs of compatible Poisson brackets obeying in addition the hierarchy
equation

{hn,O}1 = {hn−1,O}2,

where hn are the towers of commuting Hamiltonians and O is any observable.
The bi-Hamiltonian structure for the discrete rational CM model is described in [1]

and further justified in [2] by explicit construction of the corresponding deformation
of the canonical 1-form by a Nijenhuis-torsion free tensor. We give here an explicit
realization of the first two Poisson structures in terms of a collective field α(x). The
first one of these is the already known collective-field formulation of the rational CM
[12–14]. The formalism was recognized as being suitable for a useful representation of
higher conserved charges and symmetries of the N-body system [14, 15]. For the second
Poisson bracket, one requires a deformation of the Poisson brackets of α(x) together with
a change in the realization of the variables, understood from the change in the phase-space
volume element in the collective field formulation, precisely related to the differing Poisson
structure.

We then discuss the case of the trigonometric CM model. Based on the identification
between the second Poisson structures of the rational CM and first Poisson structures of
the trigonometric CM, we propose a second Poisson structure for the trigonometric CM. A
consistent formulation in the framework of a continuous field theory is proposed in terms
of a collective field α(x). The validity of the hierarchy equation for the corresponding
two brackets is conjectured in the discrete case from consistency checks on the continuous
realization.

We finally address the case of a rational RS model. The first Poisson structure on discrete
observables was derived recently [16]; we propose here a direct formulation from the Lax
matrix Poisson structure and its key r, s-matrix formulation. Once again the identification of
this Poisson structure with the second Poisson structure of the rational CM model allows us
to propose a second Poisson structure for the rational RS model, with the hierarchy property.
We then construct a field-theoretical realization of this bi-Hamiltonian structure. Its relevance
as a collective field theory for rational RS is, as we have indicated, a delicate issue, essentially
postponed until further studies.

All matrix indices throughout this paper are taken to vary between 1 and N, with N being
a given finite integer.

2



J. Phys. A: Math. Theor. 43 (2010) 185201 I Aniceto et al

2. Bi-Hamiltonian structure for rational Calogero–Moser

This was derived in [1, 2]. It is expressed directly in terms of observables, respectively,
Ik ≡ 1

k
tr(Lk) and J� = tr(L�−1Q), where L is the Lax matrix and Q is the position matrix:

Lij = piδij +
g

(qi − qj )
(1 − δij ), Q = diag(qi). (1)

From the first canonical Poisson bracket {pi, qj }1 = δij , one obtains the first Poisson bracket
expression for the invariant variables Ik, J�:

{Ik, Im}1 = 0,

{Ik, J�}1 = −(k + � − 2)Ik+�−2, (2)

{Jk, J�}1 = (� − k)Jk+�−2.

The second bracket is obtained directly by exploiting the reduction scheme yielding L and Q
from the original matrix variables, and the construction of an explicit Nijenhuis-torsion free
tensor yielding the second Poisson bracket of T ∗gl(n). It reads

{Ik, Im}2 = 0,

{Ik, J�}2 = −(k + � − 1)Ik+�−1, (3)

{Jk, J�}2 = (� − k)Jk+�−1.

It is not easy to express {, }2 in terms of the p, q variables, although it may be a very useful
alternative in view of the extension to the trigonometric CM or rational RS models.

Remark. It is easy to check (directly) that these two compatible Poisson bracket structures
are in fact one pair amongst any one chosen in the following set:

{Ik, Im}a = 0,

{Ik, J�}a = −(k + � − 2 + a)

(
1 +

λa

k

)
Ik+�−2+a, (4)

{Jk, J�}a = (� − k)Jk+�−2+a,

where a is any integer in Z and λa is an arbitrary c-number. Indeed one has

Theorem 1. Any linear combination {, }a + x{, }a′ with a �= a′, x ∈ C, yields a skew-
symmetric associative Poisson bracket.

One has here a one-parameter (λa) multi-Hamiltonian structure when a ∈ Z. More
general mixed brackets {Ik, J�}a may be derived, but we have not solved the general co-
boundary equation associated with it.

It will be important soon to specify the third Hamiltonian structure of the hierarchy starting
with {, }0 and {, }1. It can be directly computed using the explicit recursion operator in [2]. It
is unambiguously found to be given by {, }a with a = 3 and λ3 = 0.

3. Realization of the bi-Hamiltonian structure: collective field theory

The collective field theory describing the N → ∞ continuous limit of the N-site CM model
was described in [17]. It is obtained as the result of a phase-space integral, over the continuous
version of variables p and q, replacing the discrete traces of polynomials of the Lax matrix L
(substituted consistently by p(x)) and position matrix Q (substituted by q(x)). The dynamical
variables α± are identified with the end points of the p-integration. Their Poisson bracket
structure must be determined by consistency with the original Poisson bracket structure of the
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discrete traces, precisely Ik and J�. The phase-space integration, however, implies a subtle
redefinition of the observables, when higher Hamiltonian structures are to be represented,
since the invariant phase-space volume is accordingly redefined.

The first Poisson structure is described by [14]

Ik =
∫ α

dp dq
pk

k
≡
∫

dx
αk+1

k(k + 1)
,

J� =
∫ α

dp dq q · p�−1 ≡
∫

dx x
α�

�
,

(5)

with the Poisson bracket structure for α given by the first Poisson structure in KdV:

{α(x), α(y)}1 = −δ′(x − y). (6)

It is immediate to check that it yields precisely the Poisson brackets {, }1.
To obtain the realization of the second Poisson structure in terms of ‘collective’ fields,

we assume that the collective variables Ik and J� are obtained by a similar integration, over a
modified phase-space volume, taking into account the change in the Poisson brackets of the
same densities Ik, J� in terms of p and q. In particular, we assume that the degree in p of
the density yielding, respectively, Ik and Jk again differs by one unit. We are thus led to the
following general form for the observables:

Ik =
∫

dx α(x)k+af (k),

(7)
J� =

∫
dx xα(x)�+a−1g(�)

and the Poisson structure for α, assumed to be polynomial symmetric in α:

{α(x), α(y)} = −α(x)c/2α(y)c/2δ′(x − y). (8)

Determination of the numbers a, c, f (k) and g(�) follows straightforward from plugging (7)
and (8) into (3), yielding the following results up to an overall normalization of all k-indexed
observables by a factor λk−1 with arbitrary λ (corresponding to an arbitrary renormalization
of α).

The second Poisson structure {, }2 is realized by

Ik =
∫ α

p−1 dp dq ≡
∫

dx
αk

k2
,

J� =
∫ α

p−1 dp dq qp�−1 ≡
∫

dx x
α�−1

� − 1
,

with the following Poisson brackets for α:

{α(x), α(y)}2 = α(x)α(y)δ′(x − y).

Note that the result for the continuous observables is indeed obtained by a change in the phase-
space volume dp d → p−1 dp dq. Accordingly, the canonical discrete variable becomes now
ln p, and one consistently finds that it is now ln α(x) which (in the continuous limit) has a
canonical Poisson bracket structure. This Poisson bracket is the third in the KdV hierarchy. It
thus seems that the second Poisson bracket of KdV {α(x), α(y)} ∼ α(x)1/2α(y)1/2δ′(x − y)

does not play a role in the CM framework5.
Also note that although the second discrete Poisson bracket does realize the hierarchy

property and is therefore correctly identified as the second Poisson bracket in the rational CM

5 Here we are referring to the long wavelength limit of the second Poisson bracket, not the full Poisson bracket.
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bi-Hamiltonian hierarchy, the ‘second’ continuous Poisson bracket is not so, since not only
the field bracket but also the definition of the observables has to be changed. If for consistency
one computes the Poisson bracket of the same variables in terms of continuous fields, it yields
instead {

hn,

∫
dx x

α�−1

� − 1

}
2

≡
{
hn+2,

∫
dx x

α�−1

� − 1

}
1

,

exhibiting a shift of 2 in the degree of Hamiltonian, from which one inescapably concludes
that the continuous realization of the second discrete Hamiltonian structure for rational CM is
in fact a third Hamiltonian structure for the collective field theory. The second Hamiltonian
structure of the latter corresponds obviously to the second KdV bracket, and is seemingly (as
we have said) not manifest in the discrete CM frame.

4. Trigonometric Calogero–Moser model

An algebra of observables for the discrete CM trigonometric model is written [18] in terms of
the coordinate matrix6 K =∑j exp(qj ) ejj and Lax matrix L =∑i pieii +

∑
i �=j g

cos(qi−qj )

sin(qi−qj )
eij

using the first canonical Poisson structure {pi, qj } = δij . The overcomplete set of observables,

{Wmn = Tr Lm enQ,m � 0, n � 0},
is easily shown to realize a W1+∞ algebra (albeit in a very degenerate representation due to
the existence of algebraic relations between the Wmn issuing from their realization as N × N

matrices):

{Wmn,Wpq}1 = (mq − np)Wm+p−1,n+q + lower order terms.

In order to define a second Poisson structure, following the previous derivation, we
shall use as independent variables not the (pi, qj ) but a subset of algebraically independent
observables from the set {Wmn} such that the change of variables be bijective (at least from a
given Weyl chamber for the position and momenta variables, since the discrete permutation
over indices is factored out by the use of invariant traces). Guided by the discussion in [2],
we see that either {Wm0,Wm1, m � N} or {W0m,W1m, m � N} provides such a subset.
Using the first subset seems a priori natural since it contains the Hamiltonians Wl,0. However,
{Wm1,Wp1}1 = (mq − np)Wm+p−1,2 + lower order terms. It is, in principle, possible to
re-express Wm+p−1,2 in terms of Wk,1 and Wl,0 since these second index 0 and 1 observables
provide an algebraically complete set of new variables. However, this re-expression is expected
to be quite cumbersome: in particular it will certainly yield nonlinear expressions, suggesting
that a consistent guess of a compatible second Poisson bracket will be difficult to formulate.

The second set, however, closes linearly and explicitly under the first Poisson bracket and
it is thus this one which we choose to define the Poisson hierarchy. It is also crucial to note
that no lower order term appears in its Poisson brackets. It then turns out by simple inspection
that the first Poisson structure for trigonometric CM expressed in terms of variables W0,1;m is
isomorphic to the second Poisson structure for rational CM. It thus seems natural to propose
as a second Poisson structure for trigonometric CM the third Poisson structure of rational CM.
In terms of W variables it easily reads

{Wim,Wjn}2 = (in − jm)Wi+j−1,m+n+1. (9)

This characterizes {, }1 and {, }2 as a pair of compatible Poisson structures for trigonometric
CM model. However, in order to further characterize {, }1 and {, }2 as a bi-Hamiltonian

6 We should introduce some notation here. The matrix eij is a matrix which has all elements zero except the element
ij .
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structure for the trigonometric CM model, we need to prove that it realizes the hierarchy
equality for evolution of observables:

{Wm0,Win}2 ≡ {Wm+1,0,Win}1, i = 0, 1, m � N.

This is not easy since it implies that one is able to compute the second Poisson bracket or
the variables Wm0, once again a difficult task given that they are redundant variables and we
do not control the lower order terms. We shall now use the collective field description of the
continuous limit to at least establish the consistency of this statement.

5. Realization: continuous trigonometric Calogero–Moser model

It is known that for a particular value of the coupling constant the trigonometric CM model
is equivalent, at the continuum level, to a free fermion on a circle [17]. This suggests that
the collective field theory for trigonometric CM should again be expressed as a phase-space
integral, this time over a circle in the q variable, yielding the realization of the first Poisson
structure as

W0m = Tr emQ becomes W0m = ∫ dx emxα(x),

W1m = Tr emQL becomes W1m = ∫ dx emx α(x)2

2 ,

and generically

Wnm = Tr emQLn becomes Wnm =
∫

dx emx α(x)n+1

n + 1

with the Poisson bracket {α(x), α(y)}1 = δ′(x − y).
This set of integrated collective-field densities realizes indeed the leading (linear) order

of the Poisson bracket algebra for the discrete Wmn generators under the first Poisson bracket.
Note that a similar property already held in the rational case, when one extended the Poisson
algebra to the redundant discrete generators Tr LmQn, realized in the continuum limit as∫

dx xm αn+1

n+1 .

Realization of the second Poisson structure is, strictly speaking, only available at this
stage for the generators W0m, W1m. We assume as a generic form for this realization the
following monomial integrals:

Wim =
∫

dx e(m+a)x α(x)i+1+b

i + 1 + b
.

Indeed this is the only way to guarantee that the separate additivity (up to a constant!) of
the indices i and m will be preserved in the formulation of the Poisson algebra. The Poisson
structure for the field α is taken to be the most generic symmetric monomial expression in α

and ex

{α(x), α(y)} = e
c
2 (x+y)(α(x)α(y))d/2δ′(x − y).

Plugging these ansatz for W0m, W1m into the expected algebraic structure yields a unique
answer:

a = −1, c = 2, b = 0, d = 0.

In particular one remarks that it is the new α̃(x) ≡ e−xα(x) which now realizes a canonical
Poisson bracket {α̃(x), α̃(y)}2 = δ′(x − y).

Because this realization is unique, and completely determined by the Poisson brackets of
the independent generators W0m,W1m, it seems acceptable to conjecture that it will entail a
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similar realization for the redundant higher order generators Wnm, n � 2. From our previous
conjecture, they are represented as

Wnm =
∫

dx e(m−1)x α(x)n+1

n + 1
.

We can now compute at least the leading order of the actual Hamiltonian action on these
conjectured continuous observables, implied by the second Poisson structure:

{Wn0,Wim}continuous
(2) = nmWn+i−1,m+n+1.

If, as we have conjectured, this representation is indeed the continuous representation of the
second Poisson structure on all the observables of the trigonometric CM model, this equation
guarantees that, at the discrete level, we have

{Wn0,Wim}discrete
(2) = nmWn+i−1,m+n+1 = {Wn+1,0,Wim}discrete

(1)

up to lower order terms, which are in any case not accessible to the continuous representation.
Therefore, it is not inconsistent to characterize {, }discrete

(2) as a second Hamiltonian structure in
a multi-Hamiltonian hierarchy for the trigonometric CM.

6. Bi-Hamiltonian structure for the rational Ruijsenaars–Schneider model

A consistent construction of a bi-Hamiltonian structure can be formulated on the following
lines.

(a) The canonical Poisson structure in terms of the basic variables p and q is again
re-expressed as a Poisson structure for the following variables:

Ik = Tr
Lk

k
, J� = Tr QL�−1, (10)

where L is the Lax matrix for rational RS and Q = diag (qi) as before. Direct derivation of the
Poisson structure for these observables now follows from the r-matrix structure of the rational
RS Lax matrix L. It is given by

L =
N∑

k,j=1

γ

qk − qj + γ
bj ekj , bk = epk

∏
j �=k

(
1 − γ 2

(qk − qj )2

)1/2

. (11)

The matrix ekj is the N × N matrix with all components being zero except the kj

component, which is 1.
The canonical Poisson bracket in the canonical variables qk, pj :

{pk, pj }0 = {qk, qj }0 = 0, {qj , pk}0 = δkj . (12)

becomes, in the qk, bj variables:

{qk, qj } = 0,

{qk, bj } = bkδkj , (13)

{bk, bj } =
{

1

qj − qk + γ
− 1

qk − qj + γ
+

2(1 − δkj )

qk − qj

}
bkbj .

This Poisson bracket is quadratic in the Lax matrix [19] L:

{L1
⊗,L2} = a12L1L2 − L1L2d12 − L1s12L2 + L2s21L1, (14)

7
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where

d12 = −aCM
12 − w,

a12 = −aCM
12 − sCM

12 + sCM
21 + w, (15)

s21 = sCM
12 − w,

s12 = sCM
21 + w.

The following tensors already existed in the Calogero–Moser case [20]7:

aCM
12 = −

∑
k �=j

1

qj − qk

ejk ⊗ ekj ,

(17)
sCM

12 =
∑
k �=j

1

qj − qk

ejk ⊗ ekk.

They actually also define [19] the famous non-skew-symmetric dynamical r-matrix of the
rational CM model by

rCM
12 = aCM

12 + sCM
12 . (18)

The tensor w in (15) only appears in the RS model, it is defined by

w =
∑
k �=j

1

qk − qj

ekk ⊗ ejj .

Finally, one can see that the tensors in (15) obey the classical consistency relation

a12 − d12 + s21 − s12 = 0, (19)

which we shall see to be necessary for Poisson commutation of the traces.
We also determine the Poisson brackets of the Lax operator with the position operator Q,

defined as

Q =
∑

k

qkekk, (20)

obtaining

{L1
⊗,Q2} =

∑
i,j,k

{Lij , qk}eij ⊗ ekk =
∑
i,j,k

γ

qi − qj + γ
{bj , qk}eij ⊗ ekk

= −
∑
i,j

Lij eij ⊗ ejj = −Lr
1 ·
∑

j

ejj ⊗ ejj . (21)

We now re-write the above Poisson brackets using as basic variables the following traces:

Wm
n = tr(LnQm), m = 0, 1. (22)

The simplest of the Poisson brackets is

{
W 0

n ,W 0
m

} = tr1,2

n,m∑
i,j=1

{L1
⊗,L2}Ln−1

1 Lm−1
2

= mn tr1,2
(
(a12 − d12 − s12 + s21)L

n
1L

m
2

) = 0,

where we used the key consistency relation (19).

7 For the rational CM model, we have the Lax matrix

Lr =
N∑

k=1

pk ekk +
N∑

k �=j

γ

qk − qj

ekj , (16)

8
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The next Poisson bracket to be determined is{
W 0

n ,W 1
m

} = tr1,2

(∑
i,j

{L1
⊗,L2}Ln−1

1 L
j−1
2 Q2L

m−j

2

)
︸ ︷︷ ︸

A01

+ tr1,2

(∑n

i=1
Lm

2 Ln−i
1 {L1

⊗,Q2}Li−1
1

)
︸ ︷︷ ︸

B01

.

The first term is re-written as

A01 = tr1,2

⎧⎨
⎩n(a12 − s12)L

n
1

[
Lm

2 ,Q2
]

+
m∑

j=1

L
j

2Q2L
m−j

2

[
s12, L

n
1

]⎫⎬⎭ .

We once again made use of the cyclicity of the trace and of relation (19). If we now use the
explicit formulas (15), we find that

a12 − s12 = −aCM
12 − sCM

12 = −rCM
12 ,

where the superscript CM corresponds to the Calogero–Moser model. Then we write

tr1,2

⎛
⎝ m∑

j=1

L
j

2Q2L
m−j

2

[
s12, L

n
1

]⎞⎠ =
m∑

j=1

(LjQLm−j )lk(s12)i ′j ′klL
n
mn(δj ′mδi ′n − δi ′nδj ′m) = 0.

This allows us to simplify A01 even further:

A01 = tr1,2
(
n
(− rCM

12

)
Ln

1

[
Lm

2 ,Q2
]) = −n

(
Ln

ji(r
CM
12 )ijmlL

m
lm

(
Qmm − Qll

))
.

Using the expression for rCM
12 in components, we finally find

A01 = −n
∑
m�=l

Ln
mlL

m
lm = −n tr(Lm+n) + n

∑
k

Ln
kkL

m
kk.

Let us now turn to the second term of the Poisson brackets B01:

B01 = tr1,2
(
nLm

2

{
L1

⊗,Q2
}
Ln−1

1

) = −n
∑

j

Ln
jjL

m
jj .

The final result for this Poisson bracket is just{
W 0

n ,W 1
m

} = −n tr(Lm+n) = −nW 0
m+n. (23)

The final Poisson bracket to determine is{
W 1

n ,W 1
m

} = tr1,2

(∑n,m

i,j=1
{L1

⊗,L2}Li−1
1 Q1L

n−i
1 L

j−1
2 Q2L

m−j

2

)
︸ ︷︷ ︸

A11

+ tr1,2

(∑m

j=1
Ln

1{Q1
⊗,L2}Lj−1

2 Q2L
m−j

2

)
︸ ︷︷ ︸

B11

+ tr1,2

(∑n

i=1
Lm

2 {L1
⊗,Q2}Li−1

1 Q1L
n−i
1

)
︸ ︷︷ ︸

C11

.

First of all A11 is

A11 = tr1,2

⎛
⎝ n∑

i=1

(a12 − s12)L
i
1Q1L

n−i
1

[
Lm

2 ,Q2
]

+
m∑

j=1

(a12 + s21)
[
Ln

1,Q1
]
L

j

2Q2L
m−j

2

⎞
⎠

+ tr1,2
((

[Q1, d12]Q2 + [Q2, d12]Q1 + Q2[Q1, s12] − Q1[Q2, s21]
)
Ln

1L
m
2

)
.

To simplify this expression, we need a few extra results. The first one is

tr1,2(([Q1, d12]Q2 + [Q2, d12]Q1) = 0

due to the cyclicity of the trace. The second one is

tr1,2
(
Q2[Q1, s12]Ln

1L
m
2

) = (LmQ)ij (s12)klj iL
n
lk(Qkk − Qll) = 0,

9
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where we have used that s12 = sCM
21 + w from (15): the w contribution is zero, because this

tensor is diagonal on both spaces 1 and 2; the contribution from sCM
21 is also zero due to this

tensor being diagonal in the first space 1. A very similar result can be obtained for

tr1,2
(
Q1[Q2, s21])Ln

1L
m
2

) = 0,

but in this case one would need to use s21 = sCM
12 − w from (15).

With these results, A11 boils down to

A11 = tr1,2

⎛
⎝−

n∑
i=1

rCM
12 Li

1Q1L
n−i
1

[
Lm

2 ,Q2
]

+
m∑

j=1

rCM
21

[
Ln

1,Q1
]
L

j

2Q2L
m−j

2

⎞
⎠ .

In this last expression, we again used the relations directly derived from (15)

a12 − s12 = −rCM
12 , a12 + s21 = rCM

21 .

The two terms in A11 are further simplified by the use of rCM
12 in components

−
n∑

i=1

tr1,2
(
rCM

12 Li
1Q1L

n−i
1

[
Lm

2 ,Q2
]) = −

n∑
i=1

∑
k �=l

(LiQLn−i )lkL
m
kl

= −n tr(QLm+n) +
n∑

i=1

∑
k

(LiQLn−i )kkL
m
kk,

and likewise
m∑

j=1

tr1,2
(
rCM

21

[
Ln

1,Q1
]
L

j

2Q2L
m−j

2

) = m tr(QLm+n) −
m∑

j=1

∑
k

(LjQLm−j )kkL
n
kk.

Finally, A11 becomes simply

A11 = (m − n) tr(QLm+n) +
n∑

i=1

∑
k

(LiQLn−i )kkL
m
kk −

m∑
j=1

∑
k

(LjQLm−j )kkL
n
kk.

We still have to determine the other terms B11 and C11. Let us proceed with B11:

B11 =
m∑

j=1

tr1,2

(
Ln

1L2 ·
∑

k

ekk ⊗ ekk · L
j−1
2 Q2L

m−j

2

)

=
m∑

j=1

∑
k

Ln
kk(L

jQLm−j )kk.

In order to obtain the last line, we have used the fact that∑
k

Ln
kk(QLm)kk −

∑
k

Ln
kk(L

mQ)kk =
∑

k

Ln
kkQkkL

m
kk −

∑
k

Ln
kkL

m
kkQkk = 0.

Turning to C11 one similarly obtains

C11 = −
n∑

i=1

∑
k

Lm
kk(L

iQLn−i )kk.

We finally write the result for the Poisson bracket:{
W 1

n ,W 1
m

} = A11 + B11 + C11 = (m − n) tr(QLm+n) = (m − n)W 1
m+n.

10



J. Phys. A: Math. Theor. 43 (2010) 185201 I Aniceto et al

Summarizing the results obtained for the Poisson brackets of the traces, we have for the
rational RS model:{

W 0
n ,W 0

m

}
1 = 0 ,{

W 0
n ,W 1

m

}
1 = −nW 0

m+n , (24){
W 1

n ,W 1
m

}
1 = (m − n)W 1

m+n.

Renormalizing the variables W 0,1
n to our variables Ik, J�, by

Ik = 1

k
W 0

k , J� = W 1
�−1,

we obtain

{Ik, I�}1 = 0,

{J�, Ik}1 = (k + � − 1)Ik+�−1, (25)

{J�, Jm}1 = (m − �)Jm+�−1.

Another derivation of these Poisson structure was recently given [16], using the realization
of the RS model by KKS reduction [21], thereby bypassing the explicit use of the r-matrix
structure.

The key remark here is that this canonical (first) bracket for the rational RS is isomorphic
to the second bracket {, }2 (with λ2 = 0) for the rational CM. This is consistent with the remark
in [2] on the formal equality of the canonical symplectic form on T ∗GL(n, C), yielding the first
Poisson structure of the trigonometric CM model, with the relevant symplectic form yielding
the second bracket for the rational CM model, together with the well-known Ruijsenaars
duality between trigonometric CM and rational RS, certainly valid at least when the first
Poisson structures are considered in both formulations.

(b) Even though a direct computation of the new symplectic form deformed by a Nijenhuis-
torsion free tensor (i.e. the new canonical 1-form) is not available for rational RS (lacking
an obvious choice of such Nijenhuis-torsion free tensor), we however prove, in view of the
explicit computations of section 2, that the natural second Poisson brackets for the rational RS
hierarchy are expressed in terms of the observables Ik, J�, by the form of the third Poisson
brackets for rational CM written there.

Precisely

{Ik, J�}2 = 0,

{J�, Ik}2 = (k + �)Ik+�, (26)

{J�, Jm}2 = (m − �)Jm+�+1.

Proof.

(1) {, }2 is compatible with {, }1 as a Poisson bracket structure for the observables Ik, J� of
RS since the Jacobi identity equations for {, }2 +x{, }1 are the same as for {, }CM

3 +x{, }CM
2 .

(2) We have the following relation:

{Jk, I�}2 ≡ d(2)

dt�
Jk = {Jk, I�+1}1 = d(1)

dt�+1
Jk

which now characterizes {, }1, {, }2 as a bona fide bi-Hamiltonian structure for the RS
hierarchy, defined by the set of Hamiltonians {I�}. �

11
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7. Field-theoretical realization of the Ruijsenaars–Schneider structures

We now propose from first principles a field-theoretical realization of the two (bi-Hamiltonian)
Poisson structures previously computed for the rational RS models. The first bracket is realized
as

Ik =
∫

dq
ekα

k2
, J� =

∫
dq q

e(�−1)α

� − 1
,

with the Poisson bracket {α(x), α(y)} = δ′(x − y). The exponential representation in α is
motivated by the existence of the Ruijsenaars duality between rational RS and trigonometric
CM [22] under exchange of the variables p, q. Accordingly, it appears consistent to assume a
dual (x ↔ α) representation in the continuum case for the Poisson structure.

The second Poisson structure is now realized in the continuum, following a similar scheme
as in the rational and trigonometric CM case. Assuming that a representation purely in eα(x)

will hold for the p variables, one introduces as an ansatz for the observables the generic form

Ik =
∫

dq
e(k+a)α

k + a
, J� =

∫
dq q

e(�+a−1)α

� + a − 1

and similarly for the Poisson bracket

{α(x), α(y)} = e
c
2 (α(x)+α(y))δ′(x − y).

The exponential form for α in the Poisson brackets is required by the exponential form in Ik

and J�, which must be preserved under the Poisson bracket to yield again I and J generators.
Plugging these ansatz in the second Poisson bracket structure unambiguously yields a = −1
and c = 2.

From c = 2, it is now seen that φ(x) ≡ e−α(x) is a canonical field, {φ(x), φ(y)} =
δ′(x − y). As in the case of the rational CM model, this field-theoretical realization is better
interpreted as a third Poisson bracket for the continuous theory since one obtains again a
Hamiltonian evolution with a shift of 2 units in the degree:

{hn,O}(2)
continuous ≡ {hn−2,O}(1)

continuous,

setting hn ≡ ∫ dq enα

n
in both cases, as consistency requires.

The issue is now whether this field-theoretical realization can be obtained directly as a
genuine collective field theory for the RS model. This requires a re-writing of the operators
Ik, J� from a collective field theory perspective, and from that a determination of the Poisson
structures that arise, thus confirming our ansatz for these. A collective expression for I1

is known [23], in terms of quantum MacDonald operators, and one would like to extend
the analysis done in [23] to higher conserved quantities Ik and J�, from their expressions in
components found in [22]. Such a generalization, however, is not trivial to obtain, because
higher powers of the Lax matrix make such calculations very cumbersome.

Before concluding, let us remark that the case of the trigonometric RS model is much
more problematic to deal with at this time, due to the difficulty of defining a Poisson-closed
complete subalgebra of observables which could be used as suitable coordinates. In this
case, the first Poisson structure of neither the set {Wm0,Wm1, m � N} nor the dual set
{W0m,W1m, m � N} closes linearly. Indeed one has

{
W 1

n ,W 1
m

}
1 = (m − n)W 2

m+n + · · · and{
Wn

1 ,Wm
1

}
1 = (m − n)Wn+m

2 + · · ·. The difficulty which led us to eliminate the choice of the
set {Wm0,Wm1, m � N} in the trigonometric CM case exists now for both sets.
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8. Summary

To conclude, we summarize the results obtained here and the remaining issues regarding
the construction of multi-Hamiltonian structures for the N-body models, their realization in
continuous field theories and interpretation of those as collective field theories.

An Calogero–Moser, rational. Bi-Hamiltonian structures were already known in the
discrete case [1, 2]. A collective-field realization is proposed, with a consistent ‘bi-
Hamiltonian’ structure and consistently modified phase space.

An Calogero–Moser, trigonometric. Multiple Poisson structures have been established.
Consistent collective-field realizations are proposed, with a consistent ‘bi-Hamiltonian’
structure. The hierarchy equations for the multiple discrete Poisson structures have not
been rigorously established but pass consistency checks.

An Ruijsenaars–Schneider, rational. A bi-Hamiltonian structure is established in the
discrete case. A continuum realization is proposed, with a bi-Hamiltonian structure;
identification as collective field theory is yet unproven.
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